Effects of vegetative propagule pressure on the establishment of an introduced clonal plant, Hydrocotyle vulgaris
نویسندگان
چکیده
Some introduced clonal plants spread mainly by vegetative (clonal) propagules due to the absence of sexual reproduction in the introduced range. Propagule pressure (i.e. total number of propagules) may affect the establishment and thus invasion success of introduced clonal plants, and such effects may also depend on habitat conditions. A greenhouse experiment with an introduced plant, Hydrocotyle vulgaris was conducted to investigate the role of propagule pressure on its invasion process. High (five ramets) or low (one ramet) propagule pressure was established either in bare soil or in an experimental plant community consisting of four grassland species. H. vulgaris produced more total biomass under high than under low propagule pressure in both habitat conditions. Interestingly, the size of the H. vulgaris individuals was smaller under high than under low propagule pressure in bare soil, whereas it did not differ between the two propagule pressure treatments in the grassland community. The results indicated that high propagule pressure can ensure the successful invasion in either the grass community or bare soil, and the shift in the intraspecific interaction of H. vulgaris from competition in the bare soil to facilitation in the grassland community may be a potential mechanism.
منابع مشابه
Propagule Pressure, Habitat Conditions and Clonal Integration Influence the Establishment and Growth of an Invasive Clonal Plant, Alternanthera philoxeroides
Many notorious invasive plants are clonal, spreading mainly by vegetative propagules. Propagule pressure (the number of propagules) may affect the establishment, growth, and thus invasion success of these clonal plants, and such effects may also depend on habitat conditions. To understand how propagule pressure, habitat conditions and clonal integration affect the establishment and growth of th...
متن کاملVegetative Propagule Pressure and Water Depth Affect Biomass and Evenness of Submerged Macrophyte Communities
Vegetative propagule pressure may affect the establishment and structure of aquatic plant communities that are commonly dominated by plants capable of clonal growth. We experimentally constructed aquatic communities consisting of four submerged macrophytes (Hydrilla verticillata, Ceratophyllum demersum, Elodea nuttallii and Myriophyllum spicatum) with three levels of vegetative propagule pressu...
متن کاملHeterogeneous water supply affects growth and benefits of clonal integration between co-existing invasive and native Hydrocotyle species
Spatial patchiness and temporal variability in water availability are common in nature under global climate change, which can remarkably influence adaptive responses of clonal plants, i.e. clonal integration (translocating resources between connected ramets). However, little is known about the effects of spatial patchiness and temporal heterogeneity in water on growth and clonal integration bet...
متن کاملPropagule pressure, Allee effects and the probability of establishment of an invasive species (Bythotrephes longimanus)
Predicting establishment of exotic species is a central goal of invasion biology, and is dependent upon propagule pressure and population processes. We introduced invading spiny water fleas, Bythotrephes longimanus at different propagule pressures into 19 experimental enclosures, following populations over asexual generations, resting egg production, and emergence in the following year. We inte...
متن کاملNutrient enrichment alters impacts of Hydrocotyle vulgaris invasion on native plant communities
Nutrients may affect the invasiveness of alien plants and the invasibility of native plant communities. We performed a greenhouse experiment to investigate the interactive effect of invasion by a clonal herb Hydrocotyle vulgaris and nutrient enrichment on biomass and evenness of native plant communities. We established three types of plant communities (H. vulgaris alone, native plant communitie...
متن کامل